If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+23x+6=0
a = 13; b = 23; c = +6;
Δ = b2-4ac
Δ = 232-4·13·6
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{217}}{2*13}=\frac{-23-\sqrt{217}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{217}}{2*13}=\frac{-23+\sqrt{217}}{26} $
| 3{f+7}=24 | | 3/5*y-2=7/10 | | 3x/4=x+3 | | 60-p/2=5+5p | | 4x/5-3=21 | | 3/5^y-2=7/10 | | 135=2x+5 | | -3x^2+2x=-1 | | 3y/5-2=7/10 | | 8y-48=4(y-6) | | 125=2x+5 | | (X+2)(x+3)=9 | | x+15/21=26/7 | | 9/2y=27/8 | | 4(t-4)-3(2t-5)=4-7(3t+1) | | 2(t-1)-3(2t-1)=11-7(4t+3) | | 6/11y=188/22 | | 3a/4-1=23 | | 2x^2-16x-36=0 | | 25=6+3k | | -4/9(2x-9)=48 | | (2,6)m=0,4 | | 7x-12=2x-6 | | 3y-5/5-2(y-5)=y-1/5 | | 15y+8=25 | | 3/4x-4/3x=1/4-5/6 | | 2n2+n-528=0 | | 12v=-7 | | x4+2x3-13x2-10x=0 | | 12=8+2y-8 | | d÷8.4=10.2 | | 2/3x+4/3=-(2/3)+4/3 |